Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

HNF1alpha (TCF1) is a key transcription factor that is essential for pancreatic beta-cell development and function. Rare mutations of HNF1alpha cause maturity-onset diabetes of the young. A common variant, G319S, private to the Oji-Cree population, predisposes to type 2 diabetes, but the role of common HNF1alpha variation in European populations has not been comprehensively assessed. We determined the linkage disequilibrium and haplotype structure across the HNF1alpha gene region using 29 single nucleotide polymorphisms (SNPs). Eight tagging SNPs (tSNPs) that efficiently capture common haplotypes and the amino acid-changing variant, A98V, were genotyped in 5,307 subjects (2,010 type 2 diabetic case subjects, 1,643 control subjects, and 1,654 members of 521 families). We did not find any evidence of association between the tSNPs or haplotypes and type 2 diabetes. We could exclude odds ratios (ORs) >1.25 for all tSNPs. The rare V98 allele (approximately 3% frequency) showed possible evidence of association with type 2 diabetes (OR 1.23 [95% CI 0.99-1.54], P = 0.07), a result that was supported by meta-analysis of this and published studies (OR 1.31 [1.08-1.59], P = 0.007). Further studies are required to investigate this association, demonstrating the difficulty of defining the role of rare (<5%) alleles in type 2 diabetes risk.

Type

Journal article

Journal

Diabetes

Publication Date

08/2005

Volume

54

Pages

2487 - 2491

Keywords

Alleles, Case-Control Studies, DNA-Binding Proteins, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Genetic Predisposition to Disease, Haplotypes, Hepatocyte Nuclear Factor 1, Hepatocyte Nuclear Factor 1-alpha, Humans, Linkage Disequilibrium, Nuclear Proteins, Odds Ratio, Polymorphism, Single Nucleotide, Transcription Factors, United Kingdom