Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The development of cellular diversity within any organism depends on the timely and correct expression of differing subsets of genes within each tissue type. Many techniques exist which allow a global, average analysis of RNA expression; however, RNA-FISH permits the sensitive detection of specific transcripts within individual cells while preserving the cellular morphology. The technique can provide insight into the spatial and temporal organization of gene transcription as well the relationship of gene expression and mature RNA distribution to nuclear and cellular compartments. It can also reveal the intercellular variation of gene expression within a given tissue. Here, we describe RNA-FISH methodologies that allow the detection of nascent transcripts within the cell nucleus as well as protocols that allow the detection of RNA alongside DNA or proteins. Such techniques allow the placing of gene transcription within a functional context of the whole cell.

Original publication




Journal article


Methods Mol Biol

Publication Date





33 - 50


Animals, Blood Cells, Cell Culture Techniques, Cell Separation, DNA, Humans, In Situ Hybridization, Fluorescence, Oligonucleotide Probes, RNA, Messenger