Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

UNLABELLED: Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam- knockout mice, display increased resistance to GLP-1 in vivo . Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D. (Funded by the Wellcome, Medical Research Council, European Union, NIHR Oxford Biomedical Research Centre, United Kingdom, Registered on ClinicalTrials.gov, NCT02723110 .). SUMMARY PARAGRAPH: Type 2 diabetes (T2D) is a leading cause of morbidity and mortality globally 1 . Current management of T2D patients focuses on lowering glycemic exposure and reducing complications with lifestyle and pharmacological interventions 2 . Despite the availability of multiple medications to lower glycated hemoglobin (HbA1c), only 53% of individuals with T2D reach the glycemic target (HbA1c <7%) 3, 4 . There is potential to improve medication selection through "precision medicine" where patient specific factors (e.g. genetic markers) are used to indicate whether a patient is more or less likely to respond to a medication. Here we show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam- knockout mice, have reduced PAM enzyme activity, display increased resistance to glucagon like peptide 1 (GLP-1) in vivo and have reduced response to the GLP-1 receptor agonist. Meta-analysis of human data from studies examining GLP-1 receptor agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1 receptor agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.

Original publication

DOI

10.1101/2023.04.07.23288197

Type

Journal article

Journal

medRxiv

Publication Date

12/04/2023