Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Sugar beet is threatened by virus yellows, a disease complex vectored by aphids that reduces sugar content. We present an analysis of Myzus persicae population dynamics with and without neonicotinoid seed treatment. We use 6 years' yellow water trap and field-collected aphid data and two decades of 12.2 m suction-trap aphid migration data. We investigate both spatial synchrony and forecasting error to understand the structure and spatial scale of field counts and why forecasting aphid migrants lacks accuracy. Our aim is to derive statistical parameters to inform regionwide pest management strategies. RESULTS: Spatial synchrony, indicating the coincident change in counts across the region over time, is rarely present and is best described as stochastic. Uniquely, early season field populations in 2019 did show spatial synchrony to 90 km compared to the overall average weekly correlation length of 23 km. However, 70% of the time series were spatially heterogenous, indicating patchy between-field dynamics. Field counts lacked the same seasonal trend and did not peak in the same week. Forecasts tended to under-predict mid-season log10 counts. A strongly negative correlation between forecasting error and the proportion of zeros was shown. CONCLUSION: Field populations are unpredictable and stochastic, regardless of neonicotinoid seed treatment. This outcome presents a problem for decision-support that cannot usefully provide a single regionwide solution. Weighted permutation entropy inferred that M. persicae 12.2 m suction-trap time series had moderate to low intrinsic predictability. Early warning using a migration model tended to predict counts at lower levels than observed. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Original publication

DOI

10.1002/ps.7292

Type

Journal article

Journal

Pest Manag Sci

Publication Date

04/2023

Volume

79

Pages

1331 - 1341

Keywords

Beta vulgaris, spatial synchrony, sugar beet, virus reservoirs, weighted permutation entropy, yellow water traps, Animals, Aphids, Population Dynamics, Neonicotinoids, Seasons, United Kingdom