Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Heart failure resulting from acute myocardial infarction (AMI) is an important global health problem. Treatments of heart failure and AMI have improved significantly over the past two decades; however, the available diagnostic tests only give limited insights into these heterogeneous conditions at a reversible stage and are not precise enough to evaluate the status of the tissue at high risk. Innovative diagnostic tools for more accurate, more reliable, and early diagnosis of AMI are urgently needed. A promising solution is the timely identification of prognostic biomarkers, which is crucial for patients with AMI, as myocardial dysfunction and infarction lead to more severe and irreversible changes in the cardiovascular system over time. The currently available biomarkers for AMI detection include cardiac troponin I (cTnI), cardiac troponin T (cTnT), myoglobin, lactate dehydrogenase, C-reactive protein, and creatine kinase and myoglobin. Most recently, electrochemical biosensing technologies coupled with graphene quantum dots (GQDs) have emerged as a promising platform for the identification of troponin and myoglobin. The results suggest that GQDs-integrated electrochemical biosensors can provide useful prognostic information about AMI at an early, reversible, and potentially curable stage. GQDs offer several advantages over other nanomaterials that are used for the electrochemical detection of AMI such as strong interactions between cTnI and GQDs, low biomarker consumption, and reusability of the electrode; graphene-modified electrodes demonstrate excellent electrochemical responses due to the conductive nature of graphene and other features of GQDs (e.g., high specific surface area, π-π interactions with the analyte, facile electron-transfer mechanisms, size-dependent optical features, interplay between bandgap and photoluminescence, electrochemical luminescence emission capability, biocompatibility, and ease of functionalization). Other advantages include the presence of functional groups such as hydroxyl, carboxyl, carbonyl, and epoxide groups, which enhance the solubility and dispersibility of GQDs in a wide variety of solvents and biological media. In this perspective article, we consider the emerging knowledge regarding the early detection of AMI using GQDs-based electrochemical sensors and address the potential role of this sensing technology which might lead to more efficient care of patients with AMI.

Original publication

DOI

10.3390/bios12020077

Type

Journal article

Journal

Biosensors (Basel)

Publication Date

28/01/2022

Volume

12

Keywords

biosensing, electrochemical, graphene quantum dots, myocardial infarction, Biosensing Techniques, Early Diagnosis, Graphite, Humans, Myocardial Infarction, Quantum Dots