Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The fractal nature of heterogeneity of myocardial blood flow and its implications for the healthy and diseased heart is not yet understood. The main hindrance for investigation of blood flow heterogeneity and its role in physiology and pathophysiology is that conventional methods for determination of myocardial perfusion have severe limitations concerning temporal and spatial resolution and invasiveness. In isolated rat hearts, we developed a nuclear magnetic resonance technique that does not depend on contrast agents and in which the apparent longitudinal relaxation time is made perfusion sensitive by selective preparation of the imaging slice. This perfusion-sensitive relaxation time is determined within 40 seconds as a map with a high spatial in-plane resolution of 140x140 microm(2) and a thickness of 1.5 mm. Perfusion imaging was validated with the established microsphere technique. Additionally, the congruence between perfusion-sensitive T:(1) maps and first-pass perfusion imaging was demonstrated. As an application of high-resolution perfusion imaging, fractal analysis of the spatial distribution of perfusion was performed. We were able to demonstrate that the fractality of this distribution exists even in microscopic dimensions. Vasodilation by nitroglycerin modulated the fractal pattern of perfusion, and the decrease of the fractal dimension indicated a shift toward homogeneity. This implies that parameters of the fractal distribution depend on the microvascular tone rather than on anatomic preformations; ie, fractality is a functional characteristic of perfusion.

Type

Journal article

Journal

Circ Res

Publication Date

16/02/2001

Volume

88

Pages

340 - 346

Keywords

Animals, Coronary Circulation, Heart, In Vitro Techniques, Magnetic Resonance Imaging, Male, Perfusion, Pressure, Rats, Rats, Wistar, Ventricular Function