Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD in an earlier stage and predict prognosis. METHODS: We conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557 individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINRISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization approach. RESULTS: There were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with COPD (OR = 1.16, P = 5.6 × 10- 4 in the discovery and OR = 1.30, P = 1.8 × 10- 6 in the replication sample). A bi-directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD incidence (HR = 1.99, 95%CI 1.52-2.60, comparing those in the highest and lowest quartile of GlycA) but is not significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94-1.20). CONCLUSIONS: Our study shows that circulating blood GlycA is a biomarker of early COPD pathology.

Original publication

DOI

10.1186/s12890-020-01222-7

Type

Journal article

Journal

BMC Pulm Med

Publication Date

16/07/2020

Volume

20

Keywords

Biomarkers, COPD, Glycoprotein acetyls, Mendelian randomization, Metabolomics, Aged, Aged, 80 and over, Biomarkers, Cohort Studies, Female, Glycoproteins, Humans, Logistic Models, Lung, Male, Mendelian Randomization Analysis, Metabolomics, Middle Aged, Netherlands, Prognosis, Pulmonary Disease, Chronic Obstructive, Risk Factors, Survival Rate