Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Circulating metabolite levels are biomarkers for cardiovascular disease (CVD). Here we studied, association of rare variants and 226 serum lipoproteins, lipids and amino acids in 7,142 (discovery plus follow-up) healthy participants. We leveraged the information from multiple metabolite measurements on the same participants to improve discovery in rare variant association analyses for gene-based and gene-set tests by incorporating correlated metabolites as covariates in the validation stage. Gene-based analysis corrected for the effective number of tests performed, confirmed established associations at APOB, APOC3, PAH, HAL and PCSK (p<1.32x10-7) and identified novel gene-trait associations at a lower stringency threshold with ACSL1, MYCN, FBXO36 and B4GALNT3 (p<2.5x10-6). Regulation of the pyruvate dehydrogenase (PDH) complex was associated for the first time, in gene-set analyses also corrected for effective number of tests, with IDL and LDL parameters, as well as circulating cholesterol (pMETASKAT<2.41x10-6). In conclusion, using an approach that leverages metabolite measurements obtained in the same participants, we identified novel loci and pathways involved in the regulation of these important metabolic biomarkers. As large-scale biobanks continue to amass sequencing and phenotypic information, analytical approaches such as ours will be useful to fully exploit the copious amounts of biological data generated in these efforts.

Original publication

DOI

10.1371/journal.pgen.1008605

Type

Journal article

Journal

PLoS Genet

Publication Date

03/2020

Volume

16

Keywords

Biomarkers, Cardiovascular Diseases, Cholesterol, Cholesterol, LDL, Female, Genetic Variation, Genome-Wide Association Study, Humans, Lipoproteins, Male, Phenotype, Triglycerides