Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Four genes on a genomic fragment from Xenorhabdus nematophilus PMFI296 were shown to be involved in insecticidal activity towards three commercially important insect species. Each gene was expressed individually and in combinations in Escherichia coli, and the insecticidal activity of the lysates was determined. The combined four genes (xptA1, xptA2, xptB1, and xptC1), in E. coli, showed activity towards Pieris brassicae, Pieris rapae, and Heliothis virescens. The genes xptA1, xptB1, and xptC1 were involved in expressing activity towards P. rapae and P. brassicae, while the genes xptA2, xptB1, and xptC1 were needed for activity towards H. virescens. When each of these three genes was expressed individually in E. coli and the cell lysates were used in insect assays or mixed and then used, insecticidal activity was detected at a very low level. If the genes xptB1 and xptC1 were expressed in the same E. coli cell and this cell lysate was mixed with cells expressing xptA1, activity was restored to P. rapae and P. brassicae. Similarly mixing XptB1/C1 lysate with XptA2 lysate restored activity towards H. virescens. Individual gene disruptions in X. nematophilus PMFI296 reduced activity to insects; this activity was restored by complementation with cells expressing either xptA1 or xptA2 for their respective disruptions or E. coli expressing both xptB1 and xptC1 for individual disruptions of either of these genes. The genes xptA2, xptC1, and xptB1 were expressed as an operon in PMFI296 and inactivation of xptA2 or xptC1 resulted in silencing of downstream gene(s), while xptA1 was expressed as a single gene. Therefore, the two three gene product combinations interact with each other to produce good insecticidal activity.

Original publication

DOI

10.1128/AEM.69.6.3344-3349.2003

Type

Journal article

Journal

Applied and environmental microbiology

Publication Date

06/2003

Volume

69

Pages

3344 - 3349

Addresses

Department of Plant Pathology and Microbiology, Horticulture Research International, Wellesbourne, Warwick CV35 9EF, United Kingdom. martin.sergeant@hri.ac.uk

Keywords

Animals, Lepidoptera, Escherichia coli, Xenorhabdus, Bacterial Proteins, Bacterial Toxins, Insecticides, Biological Assay, Larva