Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Myocardial T1-mapping is increasingly used in multicentre studies and trials. Inconsistent image analysis introduces variability, hinders differentiation of diseases, and results in larger sample sizes. We present a systematic approach to standardize T1-map analysis by human operators to improve accuracy and consistency. METHODS: We developed a multi-step training program for T1-map post-processing. The training dataset contained 42 left ventricular (LV) short-axis T1-maps (normal and diseases; 1.5 and 3 Tesla). Contours drawn by two experienced human operators served as reference for myocardial T1 and wall thickness (WT). Trainees (n = 26) underwent training and were evaluated by: (a) qualitative review of contours; (b) quantitative comparison with reference T1 and WT. RESULTS: The mean absolute difference between reference operators was 8.4 ± 6.3 ms (T1) and 1.2 ± 0.7 pixels (WT). Trainees' mean discrepancy from reference in T1 improved significantly post-training (from 8.1 ± 2.4 to 6.7 ± 1.4 ms; p 

Original publication




Journal article


Int J Cardiol

Publication Date





128 - 134


Cardiovascular magnetic resonance imaging, Image post-processing, Manual contouring, Quality assurance, Standardisation, T1 mapping, Cardiovascular Diseases, Clinical Competence, Databases, Factual, Humans, Magnetic Resonance Imaging, Cine, Myocardium, Reproducibility of Results, Stroke Volume