Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To determine the effects of the angiotensin II receptor antagonist irbesartan, the calcium-channel blocker amlodipine, and hydrochlorothiazide/hydralazine on superoxide, NAD(P)H oxidase and nitric oxide bioavailability in spontaneously hypertensive stroke-prone rats (SHRSP). METHODS: Drugs or vehicle were administered for 8 weeks to SHRSP and blood pressure was measured weekly by tail-cuff plethysmography. After 8 weeks, superoxide levels in carotid arteries and aortas were measured by lucigenin chemiluminescence and p22phox expression quantified by immunohistochemistry. In vitro the effects of exposure to drugs and vehicle for 30 min and 4 h on superoxide levels and nitric oxide bioavailability were examined. The latter was expressed as the increase in contractile responses of carotid arteries to phenylephrine in the presence of the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester(l-NAME). RESULTS: In vivo irbesartan, amlodipine and hydrochlorothiazide/hydralazine produced similar falls in blood pressure, from 162 +/- 4 to 125 +/- 5, 132 +/- 4 and 131 +/- 6 mmHg, respectively, but irbesartan caused a greater reduction in superoxide and p22phox; superoxide levels in carotid arteries being 3.1 +/- 0.3, 1.1 +/- 0.2, 1.9 +/- 0.3 and 2.0 +/- 0.3 nmoles/mg per min, respectively. In vitro 4 h exposure to irbesartan decreased superoxide levels in the aorta from 2.08 +/- 0.68 to 1.48 +/- 0.62 nmoles/mg per min and increased nitric oxide bioavailability in carotid arteries. Neither 30 min incubation with irbesartan nor 4 h with amlodipine or hydrochlorothiazide/hydralazine altered superoxide levels. CONCLUSIONS: These studies support the hypothesis that AT1 receptor blockade has beneficial effects on superoxide production and nitric oxide bioavailability above that of other classes of antihypertensive agents. Reduced expression of components of the NAD(P)H oxidase may contribute to these effects.

Type

Journal article

Journal

J Hypertens

Publication Date

02/2002

Volume

20

Pages

281 - 286

Keywords

Amlodipine, Angiotensin II, Angiotensin Receptor Antagonists, Animals, Antihypertensive Agents, Aorta, Biological Availability, Biphenyl Compounds, Blood Pressure, Blood Vessels, Disease Models, Animal, Drug Therapy, Combination, Female, Hypertension, Immunohistochemistry, Male, Membrane Transport Proteins, NADPH Dehydrogenase, NADPH Oxidases, Nitric Oxide, Phosphoproteins, Rats, Rats, Inbred SHR, Receptors, Angiotensin, Stroke, Superoxides, Tetrazoles