Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genome-wide association studies (GWAS) conducted using commercial single nucleotide polymorphisms (SNP) arrays have proven to be a powerful tool for the detection of common disease susceptibility variants. However, their utility for the detection of lower frequency variants is yet to be practically investigated. Here we describe the application of a rare variant collapsing method to a large genome-wide SNP dataset, the Wellcome Trust Case Control Consortium rheumatoid arthritis (RA) GWAS. We partitioned the data into gene-centric bins and collapsed genotypes of low frequency variants (defined here as MAF ≤ 0.05) into a single count coupled with univariate analysis. We then prioritized gene regions for further investigation in an independent cohort of 3,355 cases and 2,427 controls based on rare variant signal p value and prior evidence to support involvement in RA. A total of 14,536 gene bins were investigated in the primary analysis and signals mapping to the TNFAIP3 and chr17q24 loci were selected for further investigation. We detected replicating association to low frequency variants in the TNFAIP3 gene (combined p = 6.6 × 10(-6)). Even though rare variants are not well-represented and can be difficult to genotype in GWAS, our study supports the application of low frequency variant collapsing methods to genome-wide SNP datasets as a means of exploiting data that are routinely ignored.

Original publication

DOI

10.1007/s00439-010-0889-1

Type

Journal article

Journal

Hum Genet

Publication Date

12/2010

Volume

128

Pages

627 - 633

Keywords

Arthritis, Rheumatoid, DNA-Binding Proteins, Genetic Predisposition to Disease, Genetic Techniques, Humans, Intracellular Signaling Peptides and Proteins, Meta-Analysis as Topic, Nuclear Proteins, Polymorphism, Single Nucleotide, Tumor Necrosis Factor alpha-Induced Protein 3