Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Computed tomography angiography (CTA) collateral scoring can identify patients most likely to benefit from mechanical thrombectomy and those more likely to have good outcomes and ranges from 0 (no collaterals) to 3 (complete collaterals). In this study, we used a machine learning approach to categorise the degree of collateral flow in 98 patients who were eligible for mechanical thrombectomy and generate an e-CTA collateral score (CTA-CS) for each patient (e-STROKE SUITE, Brainomix Ltd., Oxford, UK). Three experienced neuroradiologists (NRs) independently estimated the CTA-CS, first without and then with knowledge of the e-CTA output, before finally agreeing on a consensus score. Addition of the e-CTA improved the intraclass correlation coefficient (ICC) between NRs from 0.58 (0.46-0.67) to 0.77 (0.66-0.85, p = 0.003). Automated e-CTA, without NR input, agreed with the consensus score in 90% of scans with the remaining 10% within 1 point of the consensus (ICC 0.93, 0.90-0.95). Sensitivity and specificity for identifying favourable collateral flow (collateral score 2-3) were 0.99 (0.93-1.00) and 0.94 (0.70-1.00), respectively. e-CTA correlated with the Alberta Stroke Programme Early CT Score (Spearman correlation 0.46, p < 0.001) highlighting the value of good collateral flow in maintaining tissue viability prior to reperfusion. In conclusion, -e-CTA provides a real-time and fully automated approach to collateral scoring with the potential to improve consistency of image interpretation and to independently quantify collateral scores even without expert rater input.

Original publication

DOI

10.1159/000500076

Type

Journal article

Journal

Cerebrovasc Dis

Publication Date

2019

Volume

47

Pages

217 - 222

Keywords

Acute stroke, Alberta stroke programme early CT score, Collateral circulation, Computed tomography angiography, Thrombectomy, e-Alberta stroke programme early CT score, e-Computed tomography angiography, Automation, Blood Flow Velocity, Cerebral Angiography, Cerebrovascular Circulation, Clinical Decision-Making, Collateral Circulation, Computed Tomography Angiography, Humans, Machine Learning, Middle Cerebral Artery, Patient Selection, Predictive Value of Tests, Prognosis, Radiographic Image Interpretation, Computer-Assisted, Stroke, Thrombectomy, Triage