Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Photomicroph of cardiac muscle tissue

The APSselect award is given on a monthly basis by The American Journal of Physiology to the top 10 or 11 articles which are selected from their issues of the previous month. 

Dr Robinson won the award for his article on dilated cardiomyopathy (DCM), a frequently occurring cardiac disorder with a degree of genetic inheritance. Dr Robinson says "We have found that DCM mutations in proteins that regulate the contractile machinery cause alterations to contraction, calcium-handling, and some new signaling pathways that provide stimuli for disease development. We have used guinea pig cells that recapitulate human calcium-handling and introduced the mutations using adenovirus gene transduction to look at the initial triggers of disease before remodelling."

You can hear more on the special AJP Heart Circulation podcast featuring Dr Robinson being interviewed by Associate Editor Crystal Ripplinger. 

We want to hear about your news!

Publishing a paper? Just won an award? Get in touch with communications@rdm.ox.ac.uk

 

Similar stories

COVID-19 patients continue to experience symptoms six months after infection

Study investigating the long-term impact of moderate to severe COVID-19 finds that a large proportion of COVID-19 patients previously admitted to hospital continue to experience intrusive symptoms six months following infection.

RDM researchers awarded Oxford-Bristol Myers Squibb Fellowships

The Oxford - Bristol Myers Squibb (BMS) Fellowships Programme continued to demonstrate significant progress over the last year, despite the challenges associated with the global pandemic, including restricted lab access and work from home guidance. Six new Oxford-BMS Fellowships for 2021 were announced.

Changes in blood cell production over the human lifetime may hold clues to patterns of disease

A new paper published this week in Cell Reports reveals that changes in the gene expression of blood stem cells occur across the human lifetime; an important step in the understanding and treatment of blood disorders.