Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Truncating variants in the TTN gene (TTNtv), encoding the giant sarcomeric protein titin, cause a range of human cardiac and skeletal muscle disorders of varying penetrance and severity. The effects of variant location on clinical manifestations are incompletely understood. METHODS: We generated 6 zebrafish lines carrying truncating ttn.2 variants in the Z-disk, I-band, A-band, and M-band titin regions. Expression of titin transcripts and protein levels was evaluated using quantitative polymerase chain reaction and proteomics. Phenotype analysis was performed during embryonic development and in adult hearts. RESULTS: Homozygous embryos from all lines except the C-terminal line, e232, showed a significant reduction of Z-disk and I-band ttn.2 transcripts, but A-band and M-band transcript levels were reduced only in lines with truncations distal to the cronos promoter. These homozygous embryos uniformly died by 7 to 10 days postfertilization with marked impairment of cardiac morphology and function. Skeletal muscle motility and sarcomere organization were more disrupted in mutants with truncations distal to the cronos promoter compared with those proximal. In contrast, homozygous e232 embryos, which lacked only the titin kinase and M-band regions, had relatively preserved cardiac function with incorporation of truncated Ttn.2/Cronos protein and normal sarcomere assembly, but selective degradation of fast skeletal muscle sarcomeres. All heterozygous embryos were phenotypically indistinguishable from wild type. High-frequency echocardiography in adult heterozygous fish showed reduced ventricular contraction under resting conditions in A-band mutants. Heterozygous Z-disk and I-band mutants had no significant baseline impairment but were unable to augment ventricular contraction in response to acute adrenaline exposure, indicating a lack of cardiac reserve. CONCLUSIONS: Our data suggest that cardiac and skeletal muscle dysfunction associated with truncating ttn.2 variants is influenced by age, variant location, and the amount of functional titin protein. The distinctive phenotype associated with distal C-terminal truncations may reflect different requirements for C-terminal titin for maintenance of fast, slow, and cardiac muscle sarcomeres.

Original publication

DOI

10.1161/CIRCRESAHA.124.325999

Type

Journal article

Journal

Circ Res

Publication Date

30/01/2026

Volume

138

Keywords

cardiomyopathies, connectin (titin), muscular diseases, sarcomeres, zebrafish, Animals, Zebrafish, Connectin, Muscle, Skeletal, Sarcomeres, Phenotype, Zebrafish Proteins, Humans, Myocardium, Mutation, Animals, Genetically Modified, Heart