Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Biomolecular hydrogels are promising scaffolds for biomedical applications ranging from controlled drug release to personalized medicine. However, existing macromolecular scaffolds for nitric oxide (NO) release face several challenges, such as a low payload capacity, rapid release, and limited biocompatibility. Here, we present the design of short peptide derivatives as low-molecular-weight gelators that spontaneously self-assemble into nanofibrous hydrogels under basic aqueous conditions. Hydrogen bonding and hydrophobic interactions are central driving forces for the assembly process and contribute to tuning the mechanical properties. The nanofibrous hydrogel exhibits secondary structure properties, and the nanofibers show crystalline behavior. The terminal primary amines in the peptide building blocks could act as nucleophiles, facilitating the endogenous generation of NO gas, thus making the hydrogel scaffold a catalyst. The nanofibrous hydrogels can sequester NO from an external source that could be trapped in the interstices of the entangled fibrous networks. Simultaneously, it demonstrates anti-inflammatory effects in activated murine macrophages. This designer peptide hydrogel for NO generation and encapsulation provides fundamental insights into the design of peptide biomaterials for biomedical applications.

Original publication

DOI

10.1021/acsami.5c03250

Type

Journal article

Journal

ACS Appl Mater Interfaces

Publication Date

29/04/2025

Keywords

NO generation and encapsulation, anti-inflammatory, hydrogel, noncovalent interactions, peptides, self-assembly