Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

X-ray angiography is the most commonly used imaging modality for the detection of coronary stenoses due to its high spatial and temporal resolution of lumen contour and its utility to guide coronary interventions in real time. However, the high inter- and intra-observer variability in interpreting the geometry of 3D vascular structure based on multiple 2D image projections is a limitation in the accurate determination of lesion severity. This could be addressed by the 3D reconstruction of the coronary arterial (CA) tree. The automated reconstruction of 3D CA tree from 2D projections is challenging due to the existence of several imaging artifacts, such as vessel overlap, foreshortening, and most importantly respiratory and cardiac motion. Along with these artifacts, the acquisition geometry introduces the possibility of generating false vessel segments in the reconstruction. Our approach aims to reduce the motion artifacts in angiographic projections by developing a new method for rigid and non-rigid motion correction. A novel point-cloud based approach is subsequently introduced for reconstruction of 3D vessel centerlines by iteratively minimizing the reconstruction error. The performance of the proposed 3D reconstruction is evaluated using angiographic projections from 45 patients, producing average reprojection errors of 0.092 ±0.055 mm and 0.910 ±0.352 mm for 3D centerlines reconstruction, when co-registered with the parent vessels on projection planes that were/were not used to derive the 3D reconstruction, respectively. A comparison of the reconstructed 3D lumen surface with optical coherence tomography (OCT) measurements has been performed, showing no statistically significant difference in the luminal cross-sections reconstructed with our method, compared to OCT.

Original publication

DOI

10.1109/TMI.2019.2944092

Type

Journal article

Journal

IEEE Trans Med Imaging

Publication Date

04/2020

Volume

39

Pages

1278 - 1290

Keywords

Algorithms, Artifacts, Coronary Angiography, Coronary Vessels, Humans, Imaging, Three-Dimensional, Movement, Tomography, Optical Coherence