Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Chest X-ray (CXR) is a diagnostic tool for cardiothoracic assessment. They make up 50% of all diagnostic imaging tests. With hundreds of images examined every day, radiologists can suffer from fatigue. This fatigue may reduce diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP). It was trained and evaluated on the publicly available MIMIC-CXR dataset. We perform image quality assessment, view labelling, and segmentation-based cardiomegaly severity classification. We use the output of the severity classification for large language model-based report generation. Four board-certified radiologists assessed the output accuracy of our CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixed-sex mentions, 0.02% of poor quality images ( F 1 = 0.81), and 0.28% of wrongly labelled views (accuracy 99.4%). We assigned views for 4.18% of images which have unlabelled views. Our binary cardiomegaly classification model has 95.2% accuracy. The inter-radiologist agreement on evaluating the generated report’s semantics and correctness for radiologist-MIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset. The performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.

Original publication

DOI

10.1371/journal.pdig.0000835

Type

Journal article

Journal

PLOS Digital Health

Publisher

Public Library of Science (PLoS)

Publication Date

20/05/2025

Volume

4

Pages

e0000835 - e0000835