Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hypertrophic cardiomyopathy (HCM) is frequently underdiagnosed. Although deep learning (DL) models using raw electrocardiographic (ECG) voltage data can enhance detection, their use at the point of care is limited. Here we report the development and validation of a DL model that detects HCM from images of 12-lead ECGs across layouts. The model was developed using 124,553 ECGs from 66,987 individuals at the Yale New Haven Hospital (YNHH), with HCM features determined by concurrent imaging (cardiac magnetic resonance (CMR) or echocardiography). External validation included ECG images from MIMIC-IV, the Amsterdam University Medical Center (AUMC) and the UK Biobank (UKB), where HCM was defined by CMR (YNHH, MIMIC-IV and AUMC) and diagnosis codes (UKB). The model demonstrated robust performance across image formats and sites (areas under the receiver operating characteristic curve (AUROCs): 0.95 internal testing; 0.94 MIMIC-IV; 0.92 AUMC; 0.91 UKB). Discriminative features localized to anterior/lateral leads (V4 and V5) regardless of layout. This approach enables scalable, image-based screening for HCM across clinical settings.

Original publication

DOI

10.1038/s44161-025-00685-3

Type

Journal article

Journal

Nature cardiovascular research

Publication Date

07/2025

Addresses

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.