Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many important cardiac biomarkers used in clinical practice describe cardiac anatomy and function in three dimensions (3D). However, common cardiac magnetic resonance imaging (MRI) protocols often only generate two-dimensional (2D) image slices of the underlying 3D anatomy and are susceptible to various types of motion artifacts causing slice misalignment. In this paper, we propose a deep learning method acting directly on point clouds to reconstruct a dense 3D biventricular heart model from misaligned 2D cardiac MR image contours. The method is able to reduce mild, medium, and strong slice misalignments (mean translation sim 3.5 mm; mean rotation sim 2.5 {circ}) to a Chamfer distance below image resolution (1.25 mm) with high robustness (standard deviation 0.18 mm) on a statistical shape model dataset. It also manages to reconstruct smooth 3D shapes with accurate left ventricular volumes from cine MR images of the UK Biobank study.

Original publication

DOI

10.1109/ISBI48211.2021.9434040

Type

Conference paper

Publication Date

13/04/2021

Volume

2021-April

Pages

105 - 109