Offline Deep Reinforcement Learning and Off-Policy Evaluation for Personalized Basal Insulin Control in Type 1 Diabetes.
Journal article
Zhu T. et al, (2023), IEEE J Biomed Health Inform, PP
A Personalized and Adaptive Insulin Bolus Calculator Based on Double Deep Q-Learning to Improve Type 1 Diabetes Management
Journal article
Noaro G. et al, (2023), IEEE Journal of Biomedical and Health Informatics, 1 - 10
GluGAN: Generating Personalized Glucose Time Series Using Generative Adversarial Networks
Journal article
Zhu T. et al, (2023), IEEE Journal of Biomedical and Health Informatics, 1 - 12
Personalized Blood Glucose Prediction for Type 1 Diabetes Using Evidential Deep Learning and Meta-Learning.
Journal article
Zhu T. et al, (2022), IEEE transactions on bio-medical engineering, PP
Enhancing self-management in type 1 diabetes with wearables and deep learning.
Journal article
Zhu T. et al, (2022), NPJ digital medicine, 5
IoMT-Enabled Real-time Blood Glucose Prediction with Deep Learning and Edge Computing
Journal article
Zhu T. et al, (2022), IEEE Internet of Things Journal, 1 - 1
Deep Learning for Diabetes: A Systematic Review.
Journal article
Zhu T. et al, (2021), IEEE journal of biomedical and health informatics, 25, 2744 - 2757
Basal Glucose Control in Type 1 Diabetes Using Deep Reinforcement Learning: An In Silico Validation.
Journal article
Zhu T. et al, (2021), IEEE journal of biomedical and health informatics, 25, 1223 - 1232
An Insulin Bolus Advisor for Type 1 Diabetes Using Deep Reinforcement Learning.
Journal article
Zhu T. et al, (2020), Sensors (Basel, Switzerland), 20
Dilated Recurrent Neural Networks for Glucose Forecasting in Type 1 Diabetes.
Journal article
Zhu T. et al, (2020), Journal of healthcare informatics research, 4, 308 - 324
Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement Learning: An In Silico Validation
Preprint
Zhu T. et al, (2020)
GluNet: A Deep Learning Framework for Accurate Glucose Forecasting.
Journal article
Li K. et al, (2020), IEEE journal of biomedical and health informatics, 24, 414 - 423