Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Hypertrophic cardiomyopathy patients exhibit myocardial energetic impairment, but a causative role for this energy deficiency in the pathophysiology of hypertrophic cardiomyopathy remains unproven. We hypothesized that the metabolic modulator perhexiline would ameliorate myocardial energy deficiency and thereby improve diastolic function and exercise capacity. METHODS AND RESULTS: Forty-six consecutive patients with symptomatic exercise limitation (peak Vo(2) <75% of predicted) caused by nonobstructive hypertrophic cardiomyopathy (mean age, 55±0.26 years) were randomized to perhexiline 100 mg (n=24) or placebo (n=22). Myocardial ratio of phosphocreatine to adenosine triphosphate, an established marker of cardiac energetic status, as measured by (31)P magnetic resonance spectroscopy, left ventricular diastolic filling (heart rate normalized time to peak filling) at rest and during exercise using radionuclide ventriculography, peak Vo(2), symptoms, quality of life, and serum metabolites were assessed at baseline and study end (4.6±1.8 months). Perhexiline improved myocardial ratios of phosphocreatine to adenosine triphosphate (from 1.27±0.02 to 1.73±0.02 versus 1.29±0.01 to 1.23±0.01; P=0.003) and normalized the abnormal prolongation of heart rate normalized time to peak filling between rest and exercise (0.11±0.008 to -0.01±0.005 versus 0.15±0.007 to 0.11±0.008 second; P=0.03). These changes were accompanied by an improvement in primary end point (peak Vo(2)) (22.2±0.2 to 24.3±0.2 versus 23.6±0.3 to 22.3±0.2 mL · kg(-1) · min(-1); P=0.003) and New York Heart Association class (P<0.001) (all P values ANCOVA, perhexiline versus placebo). CONCLUSIONS: In symptomatic hypertrophic cardiomyopathy, perhexiline, a modulator of substrate metabolism, ameliorates cardiac energetic impairment, corrects diastolic dysfunction, and increases exercise capacity. This study supports the hypothesis that energy deficiency contributes to the pathophysiology and provides a rationale for further consideration of metabolic therapies in hypertrophic cardiomyopathy.

Original publication

DOI

10.1161/CIRCULATIONAHA.109.934059

Type

Journal article

Journal

Circulation

Publication Date

19/10/2010

Volume

122

Pages

1562 - 1569

Keywords

Blood Glucose, Cardiomyopathy, Hypertrophic, Double-Blind Method, Energy Metabolism, Exercise Tolerance, Female, Heart Rate, Humans, Male, Middle Aged, Myocardium, Oxygen Consumption, Perhexiline, Quality of Life, Vasodilator Agents, Ventricular Dysfunction, Left