Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Few studies report on the in vivo requirement for hematopoietic niche factors in the mammalian embryo. Here, we comprehensively analyze the requirement for Kit ligand (Kitl) in the yolk sac and aorta-gonad-mesonephros (AGM) niche. In-depth analysis of loss-of-function and transgenic reporter mouse models show that Kitl-deficient embryos harbor decreased numbers of yolk sac erythro-myeloid progenitor (EMP) cells, resulting from a proliferation defect following their initial emergence. This EMP defect causes a dramatic decrease in fetal liver erythroid cells prior to the onset of hematopoietic stem cell (HSC)-derived erythropoiesis, and a reduction in tissue-resident macrophages. Pre-HSCs in the AGM require Kitl for survival and maturation, but not proliferation. Although Kitl is expressed widely in all embryonic hematopoietic niches, conditional deletion in endothelial cells recapitulates germline loss-of-function phenotypes in AGM and yolk sac, with phenotypic HSCs but not EMPs remaining dependent on endothelial Kitl upon migration to the fetal liver. In conclusion, our data establish Kitl as a critical regulator in the in vivoAGM and yolk sac endothelial niche.

Original publication

DOI

10.15252/embr.201745477

Type

Journal article

Journal

EMBO Rep

Publication Date

10/2018

Volume

19

Keywords

AGM , Kit ligand, embryo, hematopoiesis, niche, Animals, Aorta, Cell Lineage, Cell Proliferation, Embryonic Development, Endothelial Cells, Erythropoiesis, Gene Expression Regulation, Developmental, Gonads, Hematopoiesis, Hematopoietic Stem Cells, Mesonephros, Mice, Mice, Transgenic, Stem Cell Factor, Stem Cell Niche, Yolk Sac