Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Peptidergic neurotransmission is slow compared to that mediated by classical neurotransmitters. We have studied exocytotic membrane fusion and cargo release by simultaneous capacitance measurements and confocal imaging of single secretory vesicles in neuroendocrine cells. Depletion of the readily releasable pool (RRP) correlated with exocytosis of 10%-20% of the docked vesicles. Some remaining vesicles became releasable after recovery of RRP. Expansion of the fusion pore, seen as an increase in luminal pH, occurred after approximately 0.3 s, and peptide release was delayed by another 1-10 s. We conclude that (1) RRP refilling involves chemical modification of vesicles already in place, (2) the release of large neuropeptides via the fusion pore is negligible and only proceeds after complete fusion, and (3) sluggish peptidergic transmission reflects the time course of vesicle emptying.

Type

Journal article

Journal

Neuron

Publication Date

17/01/2002

Volume

33

Pages

287 - 299

Keywords

Animals, Cell Line, Electric Stimulation, Exocytosis, Fluorescence, Green Fluorescent Proteins, Hydrogen-Ion Concentration, Indicators and Reagents, Kinetics, Luminescent Proteins, Membrane Fusion, Neurosecretory Systems, PC12 Cells, Peptides, Rats, Secretory Vesicles