Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

By analyzing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls and 1,077 trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in SETD1A and risk for schizophrenia (P = 3.3 × 10(-9)). We found only two heterozygous LoF variants in 45,376 exomes from individuals without a neuropsychiatric diagnosis, indicating that SETD1A is substantially depleted of LoF variants in the general population. Seven of the ten individuals with schizophrenia carrying SETD1A LoF variants also had learning difficulties. We further identified four SETD1A LoF carriers among 4,281 children with severe developmental disorders and two more carriers in an independent sample of 5,720 Finnish exomes, both with notable neuropsychiatric phenotypes. Together, our observations indicate that LoF variants in SETD1A cause a range of neurodevelopmental disorders, including schizophrenia. Combining these data with previous common variant evidence, we suggest that epigenetic dysregulation, specifically in the histone H3K4 methylation pathway, is an important mechanism in the pathogenesis of schizophrenia.

Original publication

DOI

10.1038/nn.4267

Type

Journal article

Journal

Nat Neurosci

Publication Date

04/2016

Volume

19

Pages

571 - 577

Keywords

Case-Control Studies, Cohort Studies, Female, Finland, Genetic Association Studies, Genetic Predisposition to Disease, Genetic Variation, Histone-Lysine N-Methyltransferase, Humans, Male, Neurodevelopmental Disorders, Schizophrenia