Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundDespite large populations carrying traits for thalassemia in countries implementing universal iron fortification, there are few data on the absorption and utilization of iron in these persons.ObjectiveWe aimed to determine whether iron absorption or utilization (or both) in women heterozygous for beta-thalassemia, alpha-thalassemia 1, or hemoglobin E (HbE) differed from that in control subjects and compound HbE/beta-thalassemia heterozygotes.DesignIn Thai women (n = 103), red blood cell indexes, iron status, non-transferrin-bound iron, and growth differentiation factor 15 were measured, and body iron was calculated. Fractional iron absorption was measured from meals fortified with isotopically labeled ((57)Fe) Fe sulfate, and iron utilization was measured by the infusion of ((58)Fe) Fe citrate.ResultsIron utilization was approximately 15% lower in alpha-thalassemia 1 or beta-thalassemia heterozygotes than in controls. When corrected for differences in serum ferritin, absorption was significantly higher in the alpha- and beta-thalassemia groups, but not the HbE heterozygotes, than in controls. HbE/beta-thalassemia compound heterozygotes had lower iron utilization and higher iron absorption and body iron than did controls. Nontransferrin-bound iron and growth differentiation factor 15 were higher in the compound heterozygotes, but not in the other groups, than in the controls.ConclusionsIn alpha-thalassemia 1 and beta-thalassemia heterozygotes with ineffective erythropoesis, dietary iron absorption is not adequately down-regulated, despite a modest increase in body iron stores. In populations with a high prevalence of these traits, a program of iron fortification could include monitoring for possible iron excess and for iron deficiency.

Original publication

DOI

10.1093/ajcn/88.4.1026

Type

Journal article

Journal

The American journal of clinical nutrition

Publication Date

10/2008

Volume

88

Pages

1026 - 1031

Addresses

Laboratory for Human Nutrition, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland. michael.zimmermann@ilw.agrl.ethz.ch

Keywords

Erythrocytes, Humans, Thalassemia, alpha-Thalassemia, beta-Thalassemia, Iron, Iron, Dietary, Iron Isotopes, Hemoglobin E, Biological Availability, Nutritional Status, Intestinal Absorption, Genotype, Heterozygote, Food, Fortified, Adolescent, Adult, Middle Aged, Female, Iron Deficiencies