Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Congenital dyserythropoietic anemia type 1 (CDA-1), a rare inborn anemia characterized by abnormal chromatin ultrastructure in erythroblasts, is caused by abnormalities in codanin-1, a highly conserved protein of unknown function. We have produced 3 monoclonal antibodies to codanin-1 that demonstrate its distribution in both nucleus and cytoplasm by immunofluorescence and allow quantitative measurements of patient and normal material byWestern blot.Adetailed analysis of chromatin structure in CDA-1 erythroblasts shows no abnormalities in overall histone composition, and the genomewide epigenetic landscape of several histone modifications is maintained. However, immunofluorescence analysis of intermediate erythroblasts from patients with CDA-1 reveals abnormal accumulation of HP1α in the Golgi apparatus. A link between mutant codanin-1 and the aberrant localization of HP1α is supported by the finding that codanin-1 can be coimmunoprecipitated by anti-HP1α antibodies. Furthermore, we show colocalization of codanin-1 with Sec23B, the protein defective in CDA-2 suggesting that the CDAs might be linked at the molecular level. Mice containing a gene-trapped Cdan1 locus demonstrate its widespread expression during development. Cdan1 gt/gt homozygotes die in utero before the onset of primitive erythropoiesis, suggesting that Cdan1 has other critical roles during embryogenesis. © 2011 by The American Society of Hematology.

Original publication

DOI

10.1182/blood-2010-09-308478

Type

Journal article

Journal

Blood

Publication Date

23/06/2011

Volume

117

Pages

6928 - 6938