Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The naked mole rat (NMR), Heterocephalus glaber, the longest-living rodent, provides a unique opportunity to explore how evolution has shaped adult stem cell (ASC) activity and tissue function with increasing lifespan. Using cumulative BrdU labelling and a quantitative imaging approach to track intestinal ASCs (Lgr5+) in their native in vivo state, we find an expanded pool of Lgr5+ cells in NMRs, and these cells specifically at the crypt base (Lgr5+CBC) exhibit slower division rates compared to those in short-lived mice but have a similar turnover as human LGR5+CBC cells. Instead of entering quiescence (G0), NMR Lgr5+CBC cells reduce their division rates by prolonging arrest in the G1 and/or G2 phases of the cell cycle. Moreover, we also observe a higher proportion of differentiated cells in NMRs that confer enhanced protection and function to the intestinal mucosa which is able to detect any chemical imbalance in the luminal environment efficiently, triggering a robust pro-apoptotic, anti-proliferative response within the stem/progenitor cell zone.

Original publication

DOI

10.1038/s41467-023-44138-6

Type

Journal article

Journal

Nat Commun

Publication Date

20/12/2023

Volume

14