Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Metabolic syndrome (MetS), the clustering of metabolic risk factors, is associated with cardiovascular disease risk. We sought to determine if dysregulation of the lipidome may contribute to metabolic risk factors. METHODS: We measured 154 circulating lipid species in 658 participants from the Framingham Heart Study (FHS) using liquid chromatography-tandem mass spectrometry and tested for associations with obesity, dysglycemia, and dyslipidemia. Independent external validation was sought in three independent cohorts. Follow-up data from the FHS were used to test for lipid metabolites associated with longitudinal changes in metabolic risk factors. RESULTS: Thirty-nine lipids were associated with obesity and eight with dysglycemia in the FHS. Of 32 lipids that were available for replication for obesity and six for dyslipidemia, 28 (88%) replicated for obesity and five (83%) for dysglycemia. Four lipids were associated with longitudinal changes in body mass index and four were associated with changes in fasting blood glucose in the FHS. CONCLUSIONS: We identified and replicated several novel lipid biomarkers of key metabolic traits. The lipid moieties identified in this study are involved in biological pathways of metabolic risk and can be explored for prognostic and therapeutic utility.

Original publication

DOI

10.1016/j.ebiom.2019.10.046

Type

Journal article

Journal

EBioMedicine

Publication Date

01/2020

Volume

51

Keywords

Biomarker, Cardiovascular disease, Dysglycemia, Dyslipidemia, Metabolic risk, Metabolic syndrome, Adult, Aged, Animals, Biomarkers, Cross-Sectional Studies, Disease Susceptibility, Female, Humans, Lipid Metabolism, Lipidomics, Lipids, Longitudinal Studies, Male, Metabolic Syndrome, Middle Aged, Risk Assessment, Risk Factors