Immunity profiles of wild-type and recombinant shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens.
Allison HE., Sergeant MJ., James CE., Saunders JR., Smith DL., Sharp RJ., Marks TS., McCarthy AJ.
The pathogenicity of Shiga-like toxin (stx)-producing Escherichia coli (STEC), notably serotype O157, the causative agent of hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura, is based partly on the presence of genes (stx(1) and/or stx(2)) that are known to be carried on temperate lambdoid bacteriophages. Stx phages were isolated from different STEC strains and found to have genome sizes in the range of 48 to 62 kb and to carry either stx(1) or stx(2) genes. Restriction fragment length polymorphism patterns and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles were relatively uninformative, but the phages could be differentiated according to their immunity profiles. Furthermore, these were sufficiently sensitive to enable the identification and differentiation of two different phages, both carrying the genes for Stx2 and originating from the same STEC host strain. The immunity profiles of the different Stx phages did not conform to the model established for bacteriophage lambda, in that the pattern of individual Stx phage infection of various lysogens was neither expected nor predicted. Unexpected differences were also observed among Stx phages in their relative lytic productivity within a single host. Two antibiotic resistance markers were used to tag a recombinant phage in which the stx genes were inactivated, enabling the first reported observation of the simultaneous infection of a single host with two genetically identical Stx phages. The data demonstrate that, although Stx phages are members of the lambdoid family, their replication and infection control strategies are not necessarily identical to the archetypical bacteriophage lambda, and this could be responsible for the widespread occurrence of stx genes across a diverse range of E. coli serotypes.