Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In vivo, cardiac-gated, black-blood, and ex vivo magnetic resonance microscopy (MRM) images of the aortic root, and histopathology data were obtained from 12 transgenic and wild-type (WT) mice. MRM was performed using a black-blood imaging spin-echo sequence with upstream and downstream in-flow saturation pulses to obtain aortic root images in three contrast techniques: proton density-weighted (PDW), T(1)- (T(1)W), and T(2)-weighted (T(2)W). Aortic wall thickness and area were measured and correlated with histopathology data (R > 0.90). Ex vivo lesion components (lipid core, fibrous tissue, and cell tissue) were identified and characterized by differing image contrast in PDW, T(1)W, and T(2)W MRM, and by histopathology. The differences between WT and transgenic mice for maximal wall thickness and area were statistically significant (P < 0.05). This study demonstrates the feasibility of in vivo murine aortic root lesion assessment and ex vivo plaque characterization by MRM.

Original publication

DOI

10.1002/mrm.10360

Type

Journal article

Journal

Magn Reson Med

Publication Date

02/2003

Volume

49

Pages

381 - 385

Keywords

Animals, Aorta, Aortic Diseases, Apolipoproteins E, Arteriosclerosis, In Vitro Techniques, Magnetic Resonance Imaging, Mice, Mice, Knockout, Mice, Transgenic, Microscopy