Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cytoplasmic β- and γ-actin isoforms, along with non-muscle myosin 2 isoforms, are tightly regulated in epithelial cells and compose the actomyosin cytoskeleton at the apical junctional complex. However, their specific role in regulating the mechanics of the membrane cortex and the organization of junctions, and which biomechanical circuitries modulate their expression remain poorly understood. Here, we show that γ-actin depletion in MDCK and other epithelial cells results in increased expression and junctional accumulation of β-actin and increased tight junction membrane tortuosity, both dependent on nonmuscle myosin-2A upregulation. The knock-out of γ-actin also decreases apical membrane stiffness and increases dynamic exchange of the cytoplasmic tight junction proteins like ZO-1 and cingulin, without affecting tight junction organization and barrier function. In summary, our findings uncover a biomechanical circuitry linking γ-actin to β-actin expression through nonmuscle myosin-2A and reveal γ-actin as a key regulator of tight junction and apical membrane cortex mechanics, and the dynamics of cytoskeleton-associated tight junction proteins in epithelial cells.

Original publication

DOI

10.1038/s41467-025-57428-y

Type

Journal article

Journal

Nat Commun

Publication Date

13/03/2025

Volume

16

Keywords

Animals, Actins, Tight Junctions, Dogs, Madin Darby Canine Kidney Cells, Nonmuscle Myosin Type IIA, Epithelial Cells, Humans, Myosin Type II, Feedback, Physiological, Zonula Occludens-1 Protein, Cytoskeleton