Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Aims: To develop a novel myeloproliferative neoplasm (MPN) in vivo model allowing conditional and reversible expression of the JAK2V617F mutation in order to address the following questions: What is the impact of order of acquisition of cooperating somatic mutations on disease phenotype? Following the development of overt disease, is the phenotype fully reversible following genetic correction of the mutation?

It has also long been recognized that tumours evolve through serial acquisition of somatic driver mutations through an often highly complex process of genetic diversification and clonal selection. However, the precise mechanisms by which mutated genes interact to generate overt neoplastic disease remain largely unclear. Myeloproliferative neoplasms (MPNs) are incurable clonal diseases characterised by frequent presence of the activating JAK2V617F mutation which often occurs together with other collaborating mutations, most frequently inactivating mutations of the epigenetic regulators TET2 or DNMT3A . Thus, MPNs are an excellent tractable disease model to better understand how different genetic lesions cooperate during development of neoplastic disease. In MPNs, cooperating mutations are acquired in a stepwise manner, and recent evidence arising from analysis of MPN patient samples has raised the possibility that the order of acquisition of these mutations can have a profound impact on the resulting disease phenotype. Furthermore, advances in molecularly targeted therapy and genome editing techniques present new opportunities to target the JAK2 mutation in patients. However, clinical experience with JAK2 inhibitors has been disappointing due to their failure to fully reverse the disease phenotype in patients, raising the possibility that the mutation might cause irreversible damage to the stem cell that acquires it. However, an alternative explanation is that JAK2 inhibitor treatments currently fail to effectively inhibit JAK2 signalling. In order to address these issues, we have developed a novel mouse model that will allow conditional activation of the JAK2V617F mutation either in isolation, or before/after collaborating mutation of TET2 or DNMT3A (all models already available). Further, this model will also allow subsequent deletion of the JAK2V617F mutation in order to determine the reversibility of the resulting disease. Beyond simply reversing the disease phenotype, one additional possibility is that MPN stem cells become “addicted” to oncogenic JAK2V617F signalling and will therefore be selectively eradicated when the mutation is removed. This project will involve deep characterisation of the phenotype associated with this novel JAK2V617F mouse model using a combination of state of the art stem cell assays and molecular techniques, including single cell analysis. Disease mechanisms will be further explored using cutting edge genome editing approaches in order to modify candidate target genes. This project provides an opportunity to address some fundamental questions in cancer biology with the potential to have a high impact on the field.

Training Opportunities

The Mead and Nerlov laboratories have clearly defined protocols to support training in specific experimental techniques. Standard operating procedures are regularly updated to ensure that methods are optimal. The above project utilises a wide range of state of the art molecular and cell biological techniques, in vivo stem cell assays and bioinformatics analysis and will consequently provide an excellent foundation for a research career.

As well as the specific training detailed above, students will have access to a wide-range of seminars and training opportunities through the many research institutes and centres based in Oxford. Students are also able to attend the Methods and Techniques course run by the MRC Weatherall Institute of Molecular Medicine. This course runs through the year, ensuring that students have the opportunity to build a broad-based understanding of differing research techniques. There are also courses on Immunology and Bioinformatics and others may be added. Institute Seminars are held on a weekly basis and regularly attract world-class scientists in haematopoiesis research. Informal exchange of ideas in the coffee area is encouraged and is an attractive feature of the MRC WIMM.

Generic skills training is offered through the Medical Sciences Division's Skills Training Programme. This programme offers a comprehensive range of courses covering many important areas of researcher development: knowledge and intellectual abilities, personal effectiveness, research governance and organisation, and engagement, influence and impact. Students are actively encouraged to take advantage of the training opportunities available to them.

The department has a successful mentoring scheme, open to graduate students, which provides an additional possible channel for personal and professional development outside the regular supervisory framework. We hold an Athena SWAN Silver Award in recognition of our efforts to support the careers of female students and staff.

Research Themes, Tools and Technologies


Key Dates for October 2018 Entry

The deadline for funded applications was 8 January 2018.

We are still accepting applications from candidates who are able to secure funding elsewhere until 12 noon on Friday 27 July 2018.

Some projects may have earlier deadline dates. Please check the project description carefully if you are considering applying.

Find out more

How to apply

To apply for a place on the DPhil in Medical Sciences you will need to submit an application using the online application form.

Find out more