Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Valvular heart diseases (VHD) affect an increasing number of adults worldwide. Despite this, our knowledge of their burden, underlying causes and consequences is limited. Indeed, a large proportion of VHD is still considered to be 'degenerative' with no clear understanding of its causes and no established preventative strategies. Most previous research in this field has been based on small-scale mechanistic studies or cross-sectional studies with their inherent limitations. Recent accumulation of Big Data from routine health records (such as the UK Clinical Practice Research Datalink [CPRD]), registries and large-scale cohorts (such as the UK Biobank) provides an unprecedented opportunity to investigate the burden and determinants of VHD and help identify potentially modifiable risk factors.

Early analyses from our group have shown highly promising results, for instance, by identifying blood pressure as a major risk factor for certain valvular conditions. The more recent imaging substudy of the UK Biobank, which involves cardiac MRI studies from up to 100,000 participants as well as genetic data, will enable more in-depth analyses of the causes of VHD. For this DPhil project, the student will acquire and use very large datasets from different sources to investigate the epidemiology of VHD. The specific focus of the studies to be undertaken will depend the student’s skills and interests. As a member of the team, the student will become involved in the design, conduct and interpretation of other related Big Data projects.

Training Opportunities

This research opportunity seeks a candidate with a quantitative background (e.g. MSc in biostatistics, epidemiology or bioinformatics) with interest in public health and cardiovascular medicine. The project is also suitable for a student with medical background, in which case some experience with statistical packages (preferably R) and good understanding of epidemiological concepts are essential. For medical doctors, learning opportunities include training in advanced statistical methods, epidemiology and usage of statistical packages such as R. For non-clinical candidates, learning opportunities involve training in epidemiological study designs as well as advanced machine learning techniques for interrogatation of some of the world’s largest and most complex datasets to address questions of high relevance to public health globally.

This project will be part of a new interdisciplinary programme entitled ‘Deep Medicine’ at the George Institute for Global Health. The research team provides expert individual supervision and support from several of experienced and enthusiastic researchers with backgrounds in clinical medicine, statistics, epidemiology, computer science and informatics. Further support in grant writing, high-impact scientific publications and career development will be provided.

As well as the specific training detailed above, students will have access to a wide-range of seminars and training opportunities through the many research institutes and centres based in Oxford. Students are also able to attend the Methods and Techniques course run by the MRC Weatherall Institute of Molecular Medicine. This course runs through the year, ensuring that students have the opportunity to build a broad-based understanding of differing research techniques.

Generic skills training is offered through the Medical Sciences Division's Skills Training Programme. This programme offers a comprehensive range of courses covering many important areas of researcher development: knowledge and intellectual abilities, personal effectiveness, research governance and organisation, and engagement, influence and impact. Students are actively encouraged to take advantage of the training opportunities available to them.

The Department has a successful mentoring scheme, open to graduate students, which provides an additional possible channel for personal and professional development outside the regular supervisory framework. We hold an Athena SWAN Silver Award in recognition of our efforts to support the careers of female students and staff.

Publications

1 Rahimi et al. PLOS Medicine 2017, 14(10): e1002404

Research Themes, Tools and Technologies

Supervisors

Additional Supervisors

Dr Dexter Canoy, George Institute for Global Health

Dr Fatemeh Rahimian, George Institute for Global Health

Key Dates for October 2018 Entry

The deadline for funded applications was 8 January 2018.

We are still accepting applications from candidates who are able to secure funding elsewhere until 12 noon on Friday 27 July 2018.

Some projects may have earlier deadline dates. Please check the project description carefully if you are considering applying.

Find out more

How to apply

To apply for a place on the DPhil in Medical Sciences you will need to submit an application using the online application form.

Find out more