Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Over recent years, several examples have shown that the actin cytoskeleton plays an important role in actively reorganising molecules in the plasma membrane during cellular signalling. This notably holds for the cortical actin cytoskeleton of immune cells that is thought to be somehow involved in the coordination of their activation at all stages (1). Understanding the role of the actin cytoskeleton is now becoming one of the most contentious questions in immunology but progress has previously been limited, mainly due to the use of conventional-resolution microscopy, which inevitably misses essential details due to limited resolution.

While these imaging techniques are currently probably the most valuable tools for directly investigating the living cell with minimal invasion, similar objects closer together than approximately 200 nm cannot be distinguished and details of the molecular organisation and dynamics of cytoskeleton-associated structures cannot be recovered directly. A remedy to this are recently developed more advanced microscopy techniques, such as super-resolution optical nanoscopy (2), actin-specific turnover measurements (3), the from us improved  method of traction force microscopy (4) by using STED nanoscopy, as well as the simultaneous measurement of molecular turnover and forces by combining fluorescence spectroscopy and  atomic force microscopy (AFM) (5).

We aim to characterise the molecular reorganisation dynamics of the actin cytoskeleton that lead to active force generation during T-cell activation by the simultaneous read-out of  the turnover dynamics of actin and key proteins involved in the activation process such as the T-cell receptor and forces applied by the T-cell. We expect these novel experiments to highlight, in thus far unprecedented detail, the role that the actin cytoskeleton plays in the activation of T-cells, and to create a critical framework for understanding immune responses.

Training Opportunities

This project will be based in the MRC Human Immunology Unit at the Weatherall Institute of Molecular Medicine, with access to state-of-the-art facilities. The project provides an opportunity for training in a broad range of different techniques, such as cell culture, molecular biology, and advanced microscopy, specifically including super-resolution optical microscopy and force measurement techniques such as STED or AFM. The disclosure of novel details of T-cell activation is an important line of basic immunological research that may translate into new approaches of modulating the immune response during infection.

As well as the specific training detailed above, students will have access to a wide-range of seminars and training opportunities through the many research institutes and centres based in Oxford. Students are also able to attend the Methods and Techniques course run by the MRC Weatherall Institute of Molecular Medicine. This course runs through the year, ensuring that students have the opportunity to build a broad-based understanding of differing research techniques.

Generic skills training is offered through the Medical Sciences Division's Skills Training Programme. This programme offers a comprehensive range of courses covering many important areas of researcher development: knowledge and intellectual abilities, personal effectiveness, research governance and organisation, and engagement, influence and impact. Students are actively encouraged to take advantage of the training opportunities available to them.

The Department has a successful mentoring scheme, open to graduate students, which provides an additional possible channel for personal and professional development outside the regular supervisory framework. We hold an Athena SWAN Silver Award in recognition of our efforts to support the careers of female students and staff.


1 A.A. Smoligovets, A.W. Smith, H.-J. Wu, R.S. Petit, J.T. Groves. Characterization of dynamic actin associations with T-cell receptor microclusters in primary T cells . J Cell Science (2012). 
2 C. Eggeling, K.I. Willig, S. J.Sahl, S.W. Hell. Lens-based fluorescence nanoscopy . Quart Rev Biophys (2015).
3 M. Fritzsche, A. Lewalle, T. Duke, K. Kruse, G. Charras. Analysis of turnover dynamics of the submembranous actin cortex . Mol Biol Cell (2013).
4 R.W. Style, R. Boltyanskiy, G.K. German, C. Hyland, C.W. MacMinn, A.F. Mertz, L.A. Wilen, Y. Xuc and E.R. Dufresne. Traction force microscopy in physics and biology . Soft Matter (2014) .
5 E. Moeendarbary, A.R. Harris. Cell mechanics: principles, practises, and prospects. WIREs Systems Biology and Medicine.

Research Themes, Tools and Technologies


Additional Supervisors

Dr Marco Fritzsche

Key Dates for October 2018 Entry

The deadline for funded applications was 8 January 2018.

We are still accepting applications from candidates who are able to secure funding elsewhere until 12 noon on Friday 27 July 2018.

Some projects may have earlier deadline dates. Please check the project description carefully if you are considering applying.

Find out more

How to apply

To apply for a place on the DPhil in Medical Sciences you will need to submit an application using the online application form.

Find out more