Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Metabolic bone diseases comprise a diverse group of disorders characterized by alterations in skeletal homeostasis, and are often associated with abnormal circulating concentrations of calcium, phosphate or vitamin D metabolites. These diseases commonly have a genetic basis and represent either a monogenic disorder due to a germline or somatic single gene mutation, or an oligogenic or polygenic disorder that involves variants in more than one gene. Germline single gene mutations causing Mendelian diseases typically have a high penetrance, whereas the genetic variations causing oligogenic or polygenic disorders are each associated with smaller effects with additional contributions from environmental factors. Recognition of familial monogenic disorders is of clinical importance to facilitate timely investigations and management of the patient and any affected relatives. The diagnosis of monogenic metabolic bone disease requires careful clinical evaluation of the large diversity of symptoms and signs associated with these disorders. Thus, the clinician must pursue a systematic approach beginning with a detailed history and physical examination, followed by appropriate laboratory and skeletal imaging evaluations. Finally, the clinician must understand the increasing number and complexity of molecular genetic tests available to ensure their appropriate use and interpretation.

Original publication

DOI

10.1111/bcp.13803

Type

Journal article

Journal

Br J Clin Pharmacol

Publication Date

06/2019

Volume

85

Pages

1147 - 1160

Keywords

genetic diseases, genetics and pharmacogenetics, molecular biology, osteoporosis, rheumatology