Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2018, American College of Rheumatology Objective: Systemic lupus erythematosus (SLE) has limited monozygotic twin concordance, implying a role for pathogenic factors other than genetic variation, such as epigenetic changes. Using the disease-discordant twin model, we investigated genome-wide DNA methylation changes in sorted CD4+ T cells, monocytes, granulocytes, and B cells in twin pairs with at least 1 SLE-affected twin. Methods: Peripheral blood obtained from 15 SLE-affected twin pairs (6 monozygotic and 9 dizygotic) was processed using density-gradient centrifugation for the granulocyte fraction. CD4+ T cells, monocytes, and B cells were further isolated using magnetic beads. Genome-wide DNA methylation was analyzed using Infinium HumanMethylation450K BeadChips. When comparing probes from SLE-affected twins and co-twins, differential DNA methylation was considered statistically significant when the P value was less than 0.01 and biologically relevant when the median DNA methylation difference was >7%. Findings were validated by pyrosequencing and replicated in an independent case–control sample. Results: In paired analyses of twins discordant for SLE restricted to the gene promoter and start region, we identified 55, 327, 247, and 1,628 genes with differentially methylated CpGs in CD4+ T cells, monocytes, granulocytes, and B cells, respectively. All cell types displayed marked hypomethylation in interferon-regulated genes, such as IFI44L, PARP9, and IFITM1, which was more pronounced in twins who experienced a disease flare within the past 2 years. In contrast to what was observed in the other cell types, differentially methylated CpGs in B cells were predominantly hypermethylated, and the most important upstream regulators included TNF and EP300. Conclusion: Hypomethylation of interferon-regulated genes occurs in all major cellular compartments in SLE-affected twins. The observed B cell promoter hypermethylation is a novel finding with potential significance in SLE pathogenesis.

Original publication

DOI

10.1002/art.40422

Type

Journal article

Journal

Arthritis and Rheumatology

Publication Date

01/06/2018

Volume

70

Pages

878 - 890