Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

trans-Resveratrol (t-RVT) has been shown to have a wide range of anti-inflammatory properties, some of which have been suggested to contribute to the molecular explanation of the French Paradox, a possible reason for the low incidence of heart disease in France. The ability of t-RVT to inhibit the production of reactive oxygen species (ROS) from monocytes (differentiated U937) was investigated using isoluminol, luminol, lucigenin, and 2',7'-dichlorofluorescein (DCF). t-RVT (0.1-50 microM) was found to significantly inhibit cellular ROS production stimulated by f-Met-Leu-Phe (fMLP), 12-phorbol 13-myristate, and arachidonic acid after a 1-h preincubation. The efficacy of t-RVT could be increased if it was added directly into the assay. NADPH-dependent superoxide production was measured in cell homogenates and t-RVT (10-50 microM) was found to have no effect on this activity. The majority of these redox probes require a peroxidase to be oxidized; therefore, the inhibitory effect of t-RVT on ROS measured by these probes is complicated by its ability to be oxidized by peroxidase enzymes and thus compete with the probe. t-RVT, known to be oxidized by the horseradish peroxidase (HRP)/H(2)O(2) system, was found to inhibit the HRP-dependent oxidation of the fluorescent probe DCF and the chemiluminescent probe isoluminol. However, using a redox probe that did not require oxidation by a peroxidase (lucigenin), significant inhibition was still observed. Moreover, the inhibitory effects of t-RVT on fMLP-induced ROS production correlated with significant inhibitory effects on fMLP-induced phosphatidylinositol 3-kinase (PI3K) activity at 50 microM and Akt phosphorylation (10-50 microM). Other known inhibitors of both PI3K and Akt were also found to inhibit this response. Therefore, inhibition of signaling through the PI3K to NADPH oxidase by t-RVT might represent an important anti-inflammatory mechanism.

Original publication

DOI

10.1016/j.freeradbiomed.2005.02.036

Type

Journal article

Journal

Free Radic Biol Med

Publication Date

01/07/2005

Volume

39

Pages

118 - 132

Keywords

Acridines, Extracellular Signal-Regulated MAP Kinases, Fluorescent Dyes, Humans, Monocytes, N-Formylmethionine Leucyl-Phenylalanine, NADPH Oxidases, Phosphatidylinositol 3-Kinases, Protein Kinase Inhibitors, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-akt, Reactive Oxygen Species, Respiratory Burst, Resveratrol, Signal Transduction, Stilbenes, U937 Cells