Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Prenatal alcohol exposure has been linked to impairment in cerebellar structure and function, including eyeblink conditioning. The deep cerebellar nuclei, which play a critical role in cerebellar-mediated learning, receive extensive inputs from brain stem and cerebellar cortex and provide the point of origin for most of the output fibers to other regions of the brain. We used in vivo (1) H magnetic resonance spectroscopy (MRS) to examine effects of prenatal alcohol exposure on neurochemistry in this important cerebellar region. METHODS: MRS data from the deep cerebellar nuclei were acquired from 37 children with heavy prenatal alcohol exposure and 17 non- or minimally exposed controls from the Cape Coloured (mixed ancestry) community in Cape Town, South Africa. RESULTS: Increased maternal alcohol consumption around time of conception was associated with lower N-Acetylaspartate (NAA) levels in the deep nuclei (r = -0.33, p < 0.05). Higher levels of alcohol consumption during pregnancy were related to lower levels of the choline-containing metabolites (r = -0.37, p < 0.01), glycerophosphocholine plus phosphocholine (Cho). Alcohol consumption levels both at conception (r = 0.35, p < 0.01) and during pregnancy (r = 0.38, p < 0.01) were related to higher levels of glutamate plus glutamine (Glx). All these effects continued to be significant after controlling for potential confounders. CONCLUSIONS: The lower NAA levels seen in relation to prenatal alcohol exposure may reflect impaired neuronal integrity in the deep cerebellar nuclei. Our finding of lower Cho points to disrupted Cho metabolism of membrane phospholipids, reflecting altered neuropil development with potentially reduced content of dendrites and synapses. The alcohol-related alterations in Glx may suggest a disruption of the glutamate-glutamine cycling involved in glutamatergic excitatory neurotransmission.

Original publication

DOI

10.1111/acer.12380

Type

Journal article

Journal

Alcohol Clin Exp Res

Publication Date

05/2014

Volume

38

Pages

1330 - 1338

Keywords

Choline, Fetal Alcohol Spectrum Disorders, Glutamate, Magnetic Resonance Spectroscopy, N-Acetylaspartate, Prenatal Alcohol Exposure, Aspartic Acid, Brain, Case-Control Studies, Cerebellar Nuclei, Child, Female, Fetal Alcohol Spectrum Disorders, Glycerylphosphorylcholine, Humans, Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Male, Neuroimaging, Phosphorylcholine