Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from where it buds out. Previous studies have shown that the HIV-1 envelope is a very low mobility environment with the diffusion of incorporated proteins two orders of magnitude slower than in plasma membrane. One of the reasons for this difference is thought to be due to HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing. To further refine the model of the molecular mobility on HIV-1 surface, we here investigated the relative importance of membrane composition and curvature in Large Unilamellar Vesicles of different composition and size (0.2-1 μm) by super-resolution STED microscopy-based fluorescence correlation spectroscopy (STED-FCS) analysis. We find that lipid composition and its rigidity but not membrane curvature play an important role in the decreased molecular mobility on vesicle surface thus confirming that this factor is an essential determinant of HIV-1 low surface mobility. Our results provide further insight into the dynamic properties of the surface of individual HIV-1 particles.

Original publication

DOI

10.1101/315168

Type

Journal article

Publication Date

04/05/2018