Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Although mutations in the glucokinase gene are implicated in the pathogenesis of glucose intolerance in pedigrees with maturity-onset diabetes of the young, the role of such mutations in typical Type 2 diabetes is poorly characterized. We studied a cohort of elderly men born (between 1900 and 1919) in two Finnish communities and exhibiting a continuous spectrum of glucose tolerance at assessments made in 1984 and 1989. Individuals were typed at two polymorphic microsatellites straddling the glucokinase gene, GCK(3') (n = 169) and GCK(5') (n = 166): these two markers were in linkage equilibrium in this cohort. Significant associations between alleles at the GCK(3') marker and glucose tolerance were evident (p = 0.002), the frequency of the (z + 2) allele rising from zero in control subjects (n = 88 chromosomes) to 6.5% (n = 62) in subjects with impaired tolerance and 12.2% (n = 188) in subjects with diabetes. Mean 2-h glucose levels were 10.5 (9.6-11.4, 95% confidence interval) mmol l-1 in individuals with the (z + 2) allele and 8.1 (7.6-8.7) mmol l-1 in those without (p = 0.01, corrected for multiple comparisons). No association was evident between GCK(5') alleles and glucose tolerance. The GCK(3') microsatellite is a marker for abnormal glucose tolerance in this cohort of elderly Finnish men.

Original publication




Journal article


Diabet Med

Publication Date





198 - 204


Aged, Alleles, Blood Glucose, Cohort Studies, DNA, DNA, Satellite, Diabetes Mellitus, Type 2, Finland, Genetic Markers, Genotype, Glucokinase, Glucose Intolerance, Glucose Tolerance Test, Haplotypes, Humans, Male, Polymerase Chain Reaction, Polymorphism, Genetic, Reference Values, Repetitive Sequences, Nucleic Acid