Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Over the past 3 years, there has been a dramatic increase in the number of confirmed type 2 diabetes (T2D) susceptibility loci, most arising through the implementation of genome-wide association studies (GWAS). However, progress toward the understanding of disease mechanisms has been slowed by modest effect sizes and the fact that most GWAS signals map away from coding sequence: the presumption is that their effects are mediated through regulation of nearby transcripts, but the identities of the genes concerned are often far from clear. In this review we describe the progress that has been made to date in translating association signals into molecular mechanisms with a focus on the most tractable signals (eg, KCNJ11/ABCC8, SLC30A8, GCKR) and those in which human, animal, and cellular models (FTO, TCF7L2, G6PC2) have provided insights into the role in T2D pathogenesis. Finally, the challenges for the field with the advent of genome-scale next-generation resequencing efforts are discussed.

Original publication

DOI

10.1007/s11892-010-0150-2

Type

Journal article

Journal

Curr Diab Rep

Publication Date

12/2010

Volume

10

Pages

452 - 466

Keywords

Animals, Cation Transport Proteins, Diabetes Mellitus, Type 2, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Potassium Channels, Inwardly Rectifying, Zinc Transporter 8