Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recently, the availability of protocols supporting genetic complementation of Eimeria has raised the prospect of generating transgenic parasite lines which can function as vaccine vectors, expressing and delivering heterologous proteins. Complementation with sequences encoding immunoprotective antigens from other Eimeria spp. offers an opportunity to reduce the complexity of species/strains in anticoccidial vaccines. Herein, we characterise and evaluate EtAMA1 and EtAMA2, two members of the apical membrane antigen (AMA) family of parasite surface proteins from Eimeria tenella. Both proteins are stage-regulated, and the sporozoite-specific EtAMA1 is effective at inducing partial protection against homologous challenge with E. tenella when used as a recombinant protein vaccine, whereas the merozoite-specific EtAMA2 is not. In order to test the ability of transgenic parasites to confer heterologous protection, E. tenella parasites were complemented with EmAMA1, the sporozoite-specific orthologue of EtAMA1 from E. maxima, coupled with different delivery signals to modify its trafficking and improve antigen exposure to the host immune system. Vaccination of chickens using these transgenic parasites conferred partial protection against E. maxima challenge, with levels of efficacy comparable to those obtained using recombinant protein or DNA vaccines. In the present work we provide evidence for the first known time of the ability of transgenic Eimeria to induce cross protection against different Eimeria spp. Genetically complemented Eimeria provide a powerful tool to streamline the complex multi-valent anticoccidial vaccine formulations that are currently available in the market by generating parasite lines expressing vaccine targets from multiple eimerian species.

Original publication

DOI

10.1016/j.ijpara.2018.01.003

Type

Journal article

Journal

Int J Parasitol

Publication Date

06/2018

Volume

48

Pages

505 - 518

Keywords

AMA1, AMA2, Apical membrane antigen, Cross protection, Eimeria maxima, Eimeria tenella, Heterologous protection, Vaccine delivery vector, Animals, Antigens, Protozoan, Chickens, Coccidiosis, Eimeria tenella, Poultry Diseases, Protozoan Vaccines, Specific Pathogen-Free Organisms