Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Lineage-tracing approaches, widely used to characterize stem cell populations, rely on the specificity and stability of individual markers for accurate results. We present a method in which genetic labeling in the intestinal epithelium is acquired as a mutation-induced clonal mark during DNA replication. By determining the rate of mutation in vivo and combining this data with the known neutral-drift dynamics that describe intestinal stem cell replacement, we quantify the number of functional stem cells in crypts and adenomas. Contrary to previous reports, we find that significantly lower numbers of "working" stem cells are present in the intestinal epithelium (five to seven per crypt) and in adenomas (nine per gland), and that those stem cells are also replaced at a significantly lower rate. These findings suggest that the bulk of tumor stem cell divisions serve only to replace stem cell loss, with rare clonal victors driving gland repopulation and tumor growth.

Original publication

DOI

10.1016/j.stem.2013.08.001

Type

Journal article

Journal

Cell Stem Cell

Publication Date

07/11/2013

Volume

13

Pages

626 - 633

Keywords

Adenoma, Animals, Intestinal Mucosa, Mice, Mice, Transgenic, Neoplastic Stem Cells, Stem Cells