Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neurogenesis is widespread in the zebrafish adult brain through the maintenance of active germinal niches. To characterize which progenitor properties correlate with this extensive neurogenic potential, we set up a method that allows progenitor cell transduction and tracing in the adult zebrafish brain using GFP-encoding retro- and lentiviruses. The telencephalic germinal zone of the zebrafish comprises quiescent radial glial progenitors and actively dividing neuroblasts. Making use of the power of clonal viral vector-based analysis, we demonstrate that these progenitors follow different division modes and fates: neuroblasts primarily undergo a limited amplification phase followed by symmetric neurogenic divisions; by contrast, radial glia are capable at the single cell level of both self-renewing and generating different cell types, and hence exhibit bona fide neural stem cell (NSC) properties in vivo. We also show that radial glial cells predominantly undergo symmetric gliogenic divisions, which amplify this NSC pool and may account for its long-lasting maintenance. We further demonstrate that blocking Notch signaling results in a significant increase in proliferating cells and in the numbers of clones, but does not affect clone composition, demonstrating that Notch primarily controls proliferation rather than cell fate. Finally, through long-term tracing, we illustrate the functional integration of newborn neurons in forebrain adult circuitries. These results characterize fundamental aspects of adult progenitor cells and neurogenesis, and open the way to using virus-based technologies for stable genetic manipulations and clonal analyses in the zebrafish adult brain.

Original publication

DOI

10.1242/dev.058156

Type

Journal article

Journal

Development

Publication Date

04/2011

Volume

138

Pages

1459 - 1469

Keywords

Animals, Brain, Cell Division, Cell Line, Electrophysiology, Flow Cytometry, Genetic Vectors, Humans, Immunohistochemistry, Lentivirus, Neural Stem Cells, Retroviridae, Stem Cells, Telencephalon, Transduction, Genetic, Zebrafish