Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Copyright © 2016 SPIE. Stimulated Emission Depletion (STED) Microscopy has evolved into a well established method offering optical superresolution below 50 nm. Running both excitation and depletion lasers in picosecond pulsed modes allows for highest optical resolution as well as fully exploiting the photon arrival time information using time-resolved single photon counting (TCSPC). Non-superresolved contributions can be easily dismissed through time-gated detection (gated STED) or a more detailed fluorescence decay analysis (FLIM-STED), both leading to an even further improved imaging resolution. Furthermore, these methods allow for accurate separation of different fluorescent species, especially if subtle differences in the excitation and emission spectra as well as the fluorescence decay are taken into account in parallel. STED can also be used to shrink the observation volume while studying the dynamics of diffusing species in Fluorescence Correlation Spectroscopy (FCS) to overcome averaging issues along long transit paths. A further unique advantage of STED-FCS is that the observation spot diameter can be tuned in a gradual manner enabling, for example, determining the type of hindered diffusion in lipid membrane studies. Our completely pulsed illumination scheme allows realizing an improved STED-FCS data acquisition using pulsed interleaved excitation (PIE). PIE-STED-FCS allows for a straightforward online check whether the STED laser has an influence on the investigated diffusion dynamics.

Original publication

DOI

10.1117/12.2208874

Type

Conference paper

Publication Date

01/01/2016

Volume

9712