Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mycobacterium tuberculosis (M.tb) has co-evolved with humans for thousands of years, to cause tuberculosis (TB). The success of M.tb as a pathogen is in part because of the ways in which M.tb evades and exploits different cell subsets, to persist and cause disease. M.tb expresses numerous molecules to prevent its recognition and destruction by immune cells. The only licensed vaccine against TB, Bacillle Calmette-Guerin (BCG), is effective at preventing disseminated disease in infants but confers highly variable efficacy against pulmonary TB in adults, particularly in the developing world. A greater understanding of the reasons for this variability, together with a better understanding of the early, innate, and non-antigen specific mechanisms of protection would facilitate the design and development of more effective vaccines.

Original publication

DOI

10.1586/14760584.2016.1170599

Type

Journal article

Journal

Expert Rev Vaccines

Publication Date

08/2016

Volume

15

Pages

1009 - 1013

Keywords

BCG, Mycobacterium tuberculosis, model, protection, vaccine, variability, Drug Discovery, Humans, Mycobacterium tuberculosis, Tuberculosis, Tuberculosis Vaccines