Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Hox11 is a homeobox gene essential for spleen formation in mice, since atrophy of the anlage of a developing spleen occurs in early embryonic development in Hox11 null mice. HOX11 is also expressed in a subset of T-cell acute leukemias after specific chromosomal translocations. Since the protein has a homeodomain and can activate transcription, it probably exerts at least some of its effects in vivo by regulation of target genes. Representational difference analysis has been used to isolate cDNA clones corresponding to mRNA species activated following stable expression of HOX11 in NIH 3T3 cells. The gene encoding the retinoic acid-synthesizing enzyme aldehyde dehydrogenase 1 (Aldh1), initially called Hdg-1, was found to be ectopically activated by HOX11 in this system. Study of Aldh1 gene expression during spleen development showed that the presence of Aldh1 mRNA inversely correlated with Hox11. Hox11 null mouse embryos have elevated Aldh1 mRNA in spleen primordia prior to atrophy, while Aldh1 seems to be repressed by Hox11 during organogenesis of the spleens of wild-type mice. This result suggests that expression of Aldh1 protein is negatively regulated by Hox11 and that abnormal expression of Aldh1 in Hox11 null mice may cause loss of splenic precursor cells by aberrant retinoic acid metabolism.

Type

Journal article

Journal

Mol Cell Biol

Publication Date

12/1998

Volume

18

Pages

7030 - 7037

Keywords

3T3 Cells, Aldehyde Dehydrogenase, Animals, Cloning, Molecular, Gene Expression Regulation, Enzymologic, Homeodomain Proteins, Humans, In Situ Hybridization, Intracellular Signaling Peptides and Proteins, Isoenzymes, LIM Domain Proteins, Mice, Muscle Proteins, Oncogene Proteins, Proto-Oncogene Proteins, RNA, Messenger, Repressor Proteins, Retinal Dehydrogenase, Spleen, T-Lymphocytes