Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Regulatory T cells (Tregs) modulate immune responses and improve survival in murine transplant models. However, whether the Treg content of allogeneic cell grafts influences the outcome in human haematopoietic stem cell (HSC) transplantation is not well established. In a prospective study of 94 adult allogeneic PBSC transplants (60% unrelated; 85% reduced intensity conditioning), the median Treg (CD3(+)CD4(+)CD25(+)FOXP3(+)CD127(dim/-)) dose transplanted was 4.7 × 10(6)/kg, with Tregs accounting for a median of 2.96% of CD4(+) T cells. Patients transplanted with grafts containing a Treg/CD4(+) T-cell ratio above the median had a 3-year overall survival of 75%, compared with 49% in those receiving grafts with a Treg/CD4(+) T-cell ratio below the median (P=0.02), with a 3-year non-relapse mortality of 13% and 35%, respectively (P=0.02). In multivariate analysis, a high graft Treg/CD4(+) T-cell ratio was an independent predictor of lower non-relapse mortality (hazard ratio (HR), 0.30; P=0.02), improved overall survival (HR, 0.45; P=0.03) and improved sustained neutrophil (HR, 0.52; P=0.002), platelet (HR, 0.51; P<0.001) and lymphocyte (HR, 0.54; P=0.009) recovery. These data support the hypothesis that the proportion of Tregs in allogeneic HSC grafts influences clinical outcome and suggest that Treg therapies could improve allogeneic HSC transplantation.

Original publication

DOI

10.1038/bmt.2015.215

Type

Journal article

Journal

Bone Marrow Transplant

Publication Date

01/2016

Volume

51

Pages

110 - 118

Keywords

Adolescent, Adult, Aged, Allografts, Animals, Disease-Free Survival, Female, Graft Survival, Hematologic Neoplasms, Hematopoietic Stem Cell Transplantation, Humans, Lymphocyte Count, Male, Mice, Middle Aged, Survival Rate, T-Lymphocytes, Regulatory