Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Carnivorous teleost fish utilize glucose poorly, and the reason for this is not known. It is possible that the capacity of adipocytes to synthesize lipids from carbohydrate precursors through a process known as "de novo lipogenesis" (DNL) is one of the factors that contributes to glucose intolerance in Atlantic salmon. METHODS: Primary adipocytes from Atlantic salmon differentiated in vitro were incubated with radiolabelled glucose in order to explore the capacity of salmon adipocytes to synthesize and deposit lipids from glucose through DNL. The lipid-storage capacity of adipocytes incubated with glucose was compared with that of cells incubated with the fatty acid palmitic acid. Quantitative PCR and immunohistochemistry were used to assess changes of genes and proteins involved in glucose and lipid transport and metabolism. RESULTS: Less than 0.1% of the radiolabelled glucose was metabolized to the fatty acids 16:0 and the stearoyl-CoA desaturase products 16:1 and 18:1 by DNL, whereas approximately 40% was converted to glycerol to form the triacylglycerol backbone of lipids. Transcriptional analysis indicated that adipocytes ensure the availability of necessary cofactors and other substrates for lipid synthesis and storage from glycolysis, the pentose phosphate pathway and glyceroneogenesis. CONCLUSIONS: We have shown for the first time that the DNL pathway is active in fish adipocytes. The capacity of the pathway to convert glucose into cellular lipids for storage is relatively low. GENERAL SIGNIFICANCE: The limited capacity of adipocytes to utilize glucose as a substrate for lipid deposition may contribute to glucose intolerance in salmonids.

Original publication

DOI

10.1016/j.bbagen.2015.10.022

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

01/2016

Volume

1860

Pages

86 - 96

Keywords

Adipose tissue, Differentiation, Glucose metabolism, Palmitic acid, Teleost, Adipocytes, Animals, Fatty Acid Transport Proteins, Glucose, Glucose Transporter Type 4, Lipid Metabolism, Lipogenesis, Palmitic Acid, Salmo salar, Triglycerides